Enduring Mysteries

In a universe where faster-than-light travel isn’t possible, wormholes—hypothetical shortcuts across spacetime that link one part of the universe with another —give hope to romantics who wish to jump millions of light years in a single bound. But are wormholes more than a sci-fi portal to zip us between galaxies? Recent research suggests that they actually describe microscopic channels between particles all around us. As far-out as wormholes sound, they are described by of Einstein’s theory of general relativity, the same theory that describes the force of gravity. General relativity expresses gravity as the smooth bending of space and time. For example, the sun creates a dimple in the fabric of spacetime; the planets “roll” around the periphery of the dimple.

A wormhole is more than a dimple, though. It is like a tunnel between two parallel sheets of spacetime. The details about wormholes remain fuzzy, but new research suggests that they may be fundamentally related to quantum entanglement. Quantum entanglement is a phenomenon where pair of objects are bound together. No matter how far apart they fly, they will “know” about each other—even if they are on opposite sides of the galaxy. Which, when you think about it, sounds a lot like a wormhole. Such pairs of particles are ubiquitous, though we don’t know for certain whether wormholes exist between them. For now, these findings remain theoretical. We haven’t even found hard evidence of large wormholes yet, let alone microwormholes.


Both remain hypothetical objects of thought experiments, but as we learned from Einstein, such musings can lead to great revolutions in physics.

Kemo D. 7

Comments have been disabled for this post.